
Copyright © 2018 Equinox Limited

From legacy to the future –
Can we get there from here?

Bill Ross

Principal Consultant

Equinox IT

… and do we want to?

Copyright © 2018 Equinox Limited

Legacy system - where are we?

• Core to your business

• Systems of record

• Stable

• Many integrations

• Completely depreciated

• Large

• Complex

• Hard to change

• Expensive to run

• Limited expertise

Monolithic

“big-ball-of-mud”
architecture

Copyright © 2018 Equinox Limited

Monoliths can be modular and
maintainable

• Layered architecture

• Modules with clear
responsibilities

• Dependencies on interfaces not
implementations

• Support complex domain models

Copyright © 2018 Equinox Limited

The future - where (we think) we want
to be?

• Microservices architecture

• Event driven

• Polyglot development
languages

• Polyglot storage

Copyright © 2018 Equinox Limited

What is a microservices architecture?

• Uses services as the unit of
modularity

• Each service corresponds for a
business capability

• Each service is independently
maintained

• Each service can use the most
different development language
and storage technology

Copyright © 2018 Equinox Limited

Can we get there from here?

?

… and do we want to?

Copyright © 2018 Equinox Limited

Decomposing a domain model

Monolithic Database
• Single storage technology

Enforced relationships
• Controlled and versioned as one

unit

Microservices Datastores
• Multiple storage technologies
• Client controlled relationships
• Controlled and versioned

independently

?

Decomposition based on Domain
Driven Design Aggregates

Copyright © 2018 Equinox Limited

Transactions that span services

Y

Z

X

Begin Transaction
• Update X
• Update Y
• Update Z
Success – Commit
Error - Rollback

• Update X
Did it work?
• Update Y
Did it work?
Error – Compensate (undo X)
• Update Z
Did it work?
Error Compensate (undo X and Y)

Monolithic Database

?
X Y Z

Microservices

Copyright © 2018 Equinox Limited

Event sourcing - eventual consistency

Y

Z

X ? X Y Z

Event Store(s)

events &
subscribers

Monolithic Database Microservices

Event_id Type Entity_ type Entity_id Event_data

1001 Loan Requested Loan 111 {…}

1002 Loan Applicant Validated Loan 111 {…}

1003 Credit Check Completed Loan 111 {…}

1004 Loan Approved Loan 111 {…}

… … … … {…}

Copyright © 2018 Equinox Limited

Event Store vs. RDBMS

“The truth is the log [event store].

The database is a cache of a subset of the log.”

- Pat Helland

The relational database management systems
use a structure and language consistent with
first order predicate logic.

Copyright © 2018 Equinox Limited

Querying and reporting

Y

Z

X

Select * From X, Y, Z
Where X.id = Y.xid and
Y.Value > 1000 and
Y.Id = Z.yid

C
o

m
m

an
d

 Q
u

e
ry

R

e
sp

o
n

si
b

ili
ty

 S
e

p
ar

at
io

n

Event Store(s)

events &
subscribers

View Store

Inserts / updates

Monolithic Database

? X Y Z

Microservices

Query Service

Commands

Queries

Copyright © 2018 Equinox Limited

Modularity for maintainability

What is it?

• Separation of the application code into logical units
that have specific responsibilities

• Separation of concerns

• Single responsibility principle

Why do it?

• Improves understandability, and therefore supports:

• Maintainability

• Enhanceability

• Longevity

Copyright © 2018 Equinox Limited

Feature Packaging & Deployment Spectrum

Namespace
Single Deployment

1

Feature in Module
Single Deployment

2

Feature in Module
Separate Package
Separate Versioning

3

Feature in Module
Separate Package
Separate Versioning
Separate Process
Accessed Synchronously

4

Feature in Module
Separate Package
Separate Versioning
Separate Process
Accessed Synchronously

5

Deployed as Part of Monolith Deployed as a Microservice

Based on model by Dan Haywood

Copyright © 2018 Equinox Limited

Scalability vs. Doman Complexity

Domain Complexity

Sc
a

la
b

ili
ty

Less
complex

More
complex

Lower volume
(“enterprise scale”)

Higher volume
(“internet scale”)

Microservices
Architecture

Modular
Monolith

Based on model by Dan Haywood

Microservices
Architecture

Copyright © 2018 Equinox Limited

Some thoughts…

If you can’t manage building a monolith inside a
single process, what makes you think putting
network in the middle is going to help?

- Greg Young

First Law of Distributed Object Design: "don't
distribute your objects"

- Martin Fowler

Copyright © 2018 Equinox Limited

Reasons to go to microservices
architecture

• Scalability

• Availability

• Flexibility

• Productivity

• Maintainability?

• Modernisation??

• Fashion???

• Performance

• Reduce complexity

• Reduce cost

• Complex domain models

Copyright © 2018 Equinox Limited

Legacy code

“Legacy code is code that doesn’t have
unit test”

- Michael C. Feathers, Working Effectively with Legacy

Code, 2005.

The Legacy Code Dilemma

When we change code, we should have
tests in place. To put tests in place , we
often have to change code.

Copyright © 2018 Equinox Limited

Don’t get fixated on the latest plumbing

Data

Data

Data

Copyright © 2018 Equinox Limited

Resources

Microservices and the First Law of Distributed Objects
https://www.martinfowler.com/articles/distributed-objects-microservices.html

Event Sourcing
https://martinfowler.com/eaaDev/EventSourcing.html

CQRS https://martinfowler.com/bliki/CQRS.html

- Martin Fowler

Working Effectively with Legacy Code, 2005

- Michael C. Feathers

Building Microservices

- Sam Newman

Domain Driven Design

- Eric Evans

Microservices vs. Monoliths

- InfoQ eMag

https://www.martinfowler.com/articles/distributed-objects-microservices.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/bliki/CQRS.html

Copyright © 2018 Equinox Limited

Injecting fresh thinking to solve
tough business problems.

